В треугольной призме катеты равны егэ

В треугольной призме катеты равны егэ

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Основные определения

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

Значок угла ∠ можно опустить и писать просто: (→a;→b).

Пусть даны два вектора →a, →b.

Отложим их от некоторой точки О пространства: →OA = →a; →OB = →b. Тогда угол между векторами — это угол ∠AOB = (→a, →b).

Угол между векторами

Угол между векторами может быть прямым, тупым или острым. Рассмотрим каждый случай:

1. Если векторы сонаправлены, то угол между ними равен 0°.

Если векторы сонаправлены

Так как косинус угла в 0° равен единице, то скалярное произведение сонаправленных векторов является произведением их длин. Если два вектора равны, то такое скалярное произведение называют скалярным квадратом.

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу

Так как косинус прямого угла равен 0, то скалярное произведение перпендикулярных векторов равно 0.

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Если векторы направлены в разные стороны

Так как косинус угла в 180° равен -1, то скалярное произведение противоположно направленных векторов равно отрицательному произведению их длин.

Также векторы могут образовывать тупой угол. Это выглядит так:

Также векторы могут образовывать тупой угол

Важно!

Так как косинус тупого угла отрицательный, то скалярное произведение векторов, которые образуют тупой угол, является тоже отрицательным.

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.


  1. Геометрическая интерпретация.

    Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

    →a * →b = →|a| * →|b| * cosα


    Скалярным произведением

  2. Алгебраическая интерпретация.

Что важно запомнить про геометрическую интерпретацию скалярного произведения:

Скалярное произведение в координатах

Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

Докажем это определение:


  1. Сначала докажем равенства
    Скалярное произведение в координатах

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB - →OA = →b - →a = (bx - ax, by - ay)


  2. Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    По теореме косинусов можно записать

    Так как:


    По теореме косинусов можно записать рис2

    то последнее равенство можно переписать так:


    По теореме косинусов можно записать рис 3

    а по первому определению скалярного произведения имеем


     по первому определению скалярного произведения имеем

    откуда


     по первому определению скалярного произведения имеем рис2

  3. Вспомнив формулу вычисления длины вектора по координатам, получаем
    Вспомнив формулу вычисления длины вектора по координатам

  4. Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.

  5. Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.

Формулы скалярного произведения векторов заданных координатами

Формула скалярного произведения векторов для плоских задач

В плоской задаче скалярное произведение векторов a = {ax ; ay} и b = {bx ; by} можно найти по формуле:

a * b = ax * bx + ay * by

Формула скалярного произведения векторов для пространственных задач

В пространственной задаче скалярное произведение векторов a = {ax ; ay ; az} и b = {bx ; by ; bz} можно найти по формуле:

a * b = ax * bx + ay * by + az * bz

Формула скалярного произведения n-мерных векторов

В n-мерном пространстве скалярное произведение векторов a = {a1; a2; ... ; an} и b = {b1; b2; ... ; bn} можно найти по формуле:

a * b = a1 * b1 + a2 * b2 + ... + an * bn

Свойства скалярного произведения

Свойства скалярного произведения векторов:


  1. Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →а * →а > 0

    →0 * →0 = 0


  2. Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2


  3. Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a


  4. Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c


  5. Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)


  6. Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

Аналогично доказываются остальные свойства скалярного произведения.

Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых

и,

свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых рис2

откуда следует:

свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых рис3